N-type Bi-facial Solar Cells with Boron Emitters from Doped Pecvd Layers

نویسنده

  • A. Frey
چکیده

This work is mainly focused on an alternative method for emitter formation by means of boron diffusion from a boron-doped plasma-enhanced chemical vapor deposition (PECVD) doping source. With this approach only one high temperature process is necessary for emitter and BSF/FSF formation (co-diffusion), without depletion of surface doping concentration. This enables time and cost-efficient fabrication of solar cells with high conversion efficiencies, as shown in this work, on large area (156.25 cm) bi-facial devices with conversion efficiencies up to 19.7% measured with white back sheet. Furthermore, the contact formation with screen-printing of silver/aluminum (Ag/Al) pastes and its emitter shunting behavior due to Ag/Al spikes, varying with the firing conditions in a belt furnace, are of major interest. Low contact resistance values below 4 mΩcm can be realized with screen-printed Ag/Al contacts on 55-70 Ω/sq PECVD boron emitters. In addition, Ag/Al spikes with a depth of around 1-3 μm could be detected with SEM measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of contact firing conditions on the characteristics of bi-facial n-type silicon solar cells using Ag/Al pastes

In this study we investigate metal spike formation of screen-printed Ag/Al pastes during contact firing in an infrared belt furnace and its influence on the characteristics of n-type bi-facial silicon solar cells. The boron emitters are formed in a co-diffusion step using boron doped PECVD layers. It is demonstrated that the formation of Ag/Al spikes results in strong FF and VOC losses limiting...

متن کامل

Contact Formation on Boron Doped Silicon Substrates from Passivating Pecv- Deposited Dielectric Doping Layers with Anti-reflective Properties by Screen- Printing Ag Pastes for High-efficiency N-type Silicon Solar Cells

n-type silicon solar cell designs for high-efficiency commonly incorporate boron emitter formation. PECV-deposited boron diffusion sources are an alternative to primarily used boron gas diffusion sources. CVD layers are multi-functional allowing for diffusion of boron, surface passivation and contact formation by one single layer. In this case, these BSG layers are applied in a co-diffused cell...

متن کامل

Contact Formation on P-doped Si by Screen-printing Pure Ag Pastes for Bifacial N-type Si Solar Cells

n-type solar cell concepts increasingly utilize emitter formation by diffusion from boron doped sources. Combining the advantage of n-type silicon material and bifacial cell architecture enables high-efficiency and versatile photovoltaics. In case of boron emitters, it was standard until now to form a metal-semiconductor contact by screenprinting Al containing Ag pastes. Instead of utilizing Al...

متن کامل

Base contacts and selective emitters processed by laser doping technique for p-type IBC c-Si solar cells

In this work, we describe a novel fabrication process of p-type interdigitated back contact (IBC) silicon solar developed by means of laser doping and laser firing techniques. We use dielectric layers both as dopant sources to create highly-doped regions and as passivating layers. In particular, we use phosphorus-doped silicon carbide stacks (a-SiCx (n)) deposited by Plasma Enhanced Chemical Va...

متن کامل

Contacting and Recombination Analysis of Boron Emitters via Etch-back for Advanced N-type Si Solar Cells

In p-type c-Si solar cells, selective emitter structures generated by emitter etch-back (EEB) have been introduced in recent years in order to minimize electrical losses in the phosphorous emitter being one of the dominant factors limiting the performance of standard screen-printed p-type c-Si solar cells. In this work, a homogeneously or selectively etched-back boron emitter is demonstrated to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014